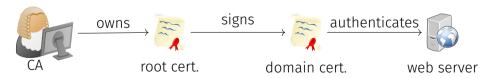


Revisiting User Privacy for Certificate Transparency

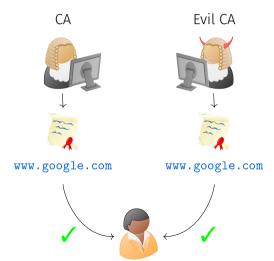
Daniel Kales, Olamide Omolola, <u>Sebastian Ramacher</u> EuroS&P'19, June 19th, 2019

> https://www.iaik.tugraz.at


Outline

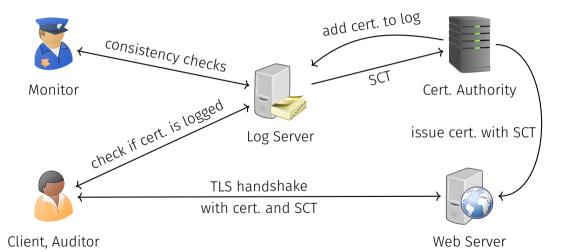
- What is Certificate Transparency?
- 2 Privacy Concerns for End Users
- 3 Solving Privacy Concerns
- 4 Practical Evaluation

What is Certificate Transparency?

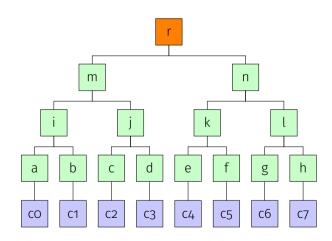

X509 Certificate Ecosystem

- Certificates bind user's information to the public key
- Certificate is signed by a root certificate
- Root certificate is owned by a trusted entity called Certificate Authority (CA)
- User's certificate can be verified by linking it to the known root certificate

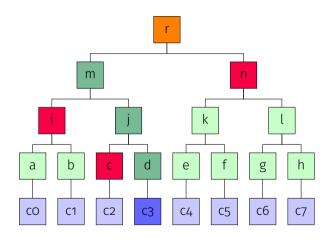
X509 Certificate Ecosystem Problems


- Signatures prevent malicious websites from using forged certificates
- No protection against mistakenly or maliciously issued certificates!
- Real-world problems: DigiNotar compromised by hackers

Certificate Transparency

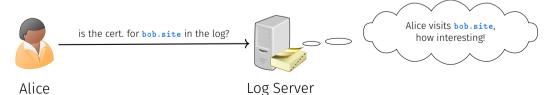

- Need monitoring system for all issued certificates
- Goals:
 - easily accessible to everyone, open framework
 - refuse use of certificates not in monitoring system
 - cryptographic guarantees for logging
- Certificate Transparency [Lau14; LLK13] was designed to be this system
- Log servers give signed promise of inclusion in log to CA
 - Signed Certificate Timestamp (SCT)
- Mandatory for certificates issued after April 30th, 2018!

Certificate Transparency (cont.)


Log Server Structure

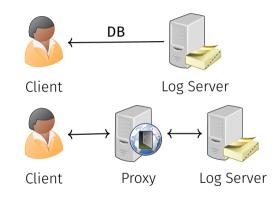
- Merkle tree
 - Binary tree of hashed nodes
 - Log server periodically updates tree with new certificates
 - Log server also signs root hash

Log Server Structure (cont.)

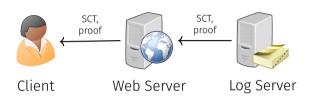

- Membership proof
 - Release intermediary hashes
 - Re-calculate path to root
 - Compare against known root hash
 - Logarithmic proof size

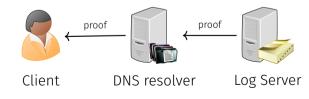
Privacy Concerns for End Users

Privacy Concerns for End Users

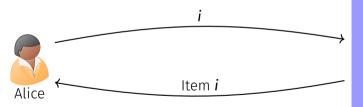

- End users have auditing role
 - Verify certificate is contained in log according to SCT
 - If not, report log server as malicious
- Privacy loss:
 - Log server learns browsing behavior of client
 - Could deter clients from using Certificate Transparency

Solving Privacy Concerns


Naïve Solutions


- Download full log:
 - Infeasible for most clients
 - Log sizes of 10+ GiB
- Redirect query through proxy:
 - Protect client query from log server
 - Only shifts privacy problem to proxy

Other Approaches


- Stapling Approach:
 - Web server gets proof from log server
 - Forwards proof to client
 - More work for web server
- CT over DNS:
 - Get proofs via DNS queries
 - Shifts privacy concerns to DNS server
 - DNS mostly plaintext

Private Information Retrieval

Retrieve item from database

Database Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7

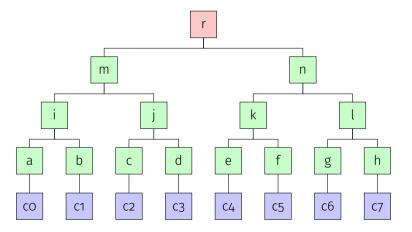
Private Information Retrieval

Retrieve item from database **Database** Without revealing accessed item Item 1 $[i]_{\triangle}$ Item 2 Item 3 Item 4 [Item *i*]_ Alice Item 5 Item 6 ? Item 7

Private Information Retrieval (cont.)

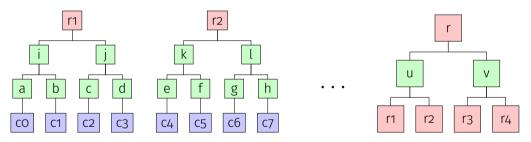
- Previous efforts by Lueks and Goldberg [LG15] in 2015
 - Optimizations to Percy++ PIR system
 - Multi-server model
 - Speedup when answering many client queries at once
 - Use-case: Certificate Transparency
- Assumed 4 million certificates
 - Runtime of a few seconds per query
 - Practical today?

Current Log Server Statistics


- merkle.town: CT ecosystem statistics¹
- Number of new certificates per hour (global): \approx 53,000

Root CA	Certifica	Percentage	
DigiCert	64,226,041	$(2^{25.94})$	5%
Let's Encrypt	941,016,262	$(2^{29.81})$	72%
Sectigo	246,484,842	$(2^{27.88})$	19%
Other	62,114,615	$(2^{25.89})$	5%

¹retrieved on 2019-04-08

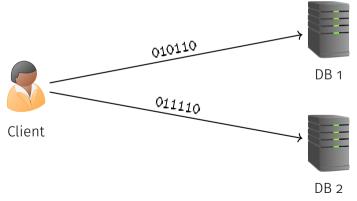

Changes to Merkle Tree Structure

Original Merkle Tree:

Changes to Merkle Tree Structure (cont.)

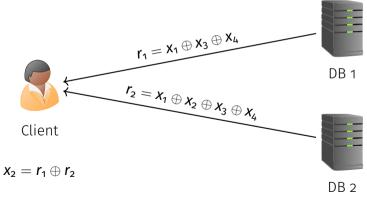
Merkle Tree with Sub-Trees:

Changes to Merkle Tree Structure (cont.)


- Log server only issues SCTs once per predetermined time span
 - e.g., a new sub-tree every hour (time span configurable)
- By completing full sub-tree, we can include the proof in the SCT
 - store Merkle tree proofs for sub-trees in SCT extension field
 - only retrieve proof between sub-tree root and top-level root hashes
- Tradeoff between tree size, SCT issuing latency and SCT size
- Other accumulators possible (e.g., bilinear accumulators)

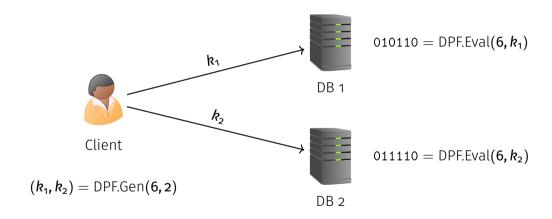
Multi-Server PIR

- Multi-Server PIR gives information-theoretic security
 - Even with unlimited computing power, no way for server to find index i!
- Important restriction: No collusion between servers!
- Much better performance than single-server PIR
 - No need for expensive primitives, e.g. homomorphic encryption
 - Based on secret-sharing approaches


Multi-Server PIR (cont.)

"Linear-Summation Scheme" [CGK⁺95]

Multi-Server PIR (cont.)


"Linear-Summation Scheme" [CGK⁺95]

Two-Server PIR from DPFs

- Problem: Still N = |DB| bits of communication per server and query
- Distributed Point Functions (DPF) [GI14]
 - "Function Secret Sharing" by Boyle et al. [BGI15]
- $(k_1, k_2) \leftarrow \mathsf{DPF}.\mathsf{Gen}(N, q)$
 - lacktriangle Generate two short ($\log N$) keys based on chosen index q and length N
- $K_i \leftarrow \mathsf{DPF.Eval}(N, k_i)$
 - **Expand short key** k_i to N bit long keystream K_i
- Property: $K_1 \oplus K_2$ is a bitstring with only one bit at position q set

Two-Server PIR from DPFs (cont.)

Multi-Server PIR Deployment

- Important requirement: No collusion between two servers!
 - If violated, privacy is lost!
- Real-world deployment:
 - Log server data is publicly accessible
 - Competitor of first log server: Google ↔ Microsoft
 - Privacy-conscious organizations: EFF, EDRi
- Only extension to normal log server API, users still can query without privacy protection

Practical Evaluation

Evaluation

- Single-Server PIR
 - Not feasible for full CT logs with 2²⁸ or more elements!
 - Open-source PIR framework XPIR [MBF+16]
 - Evaluation for sub-tree each hour

tree size	DB gen.	Query gen. [ms]	Reply gen.	Comm. [KB]	
2 ¹⁵	3640	7491	1748	128	

Evaluation (cont.)

- Multi-Server PIR using DPFs
 - Almost feasible even for full CT logs!

tree size	DPF.Gen	DPF.Eval [ms	XOR [3]	Total	Comm. [B]
2 ²⁰	0.05	0.32	4.28	4.66	2938
2 ²²	0.07	1.23	16.72	18.03	3590
2 ²⁴	0.08	4.78	64.49	69.36	4314
2 ²⁶	0.09	19.22	251.32	270.64	5110
2 ²⁸	0.11	78.41	988.93	1067.46	5978

Evaluation (cont.)

- Multi-Server PIR using DPFs and sub-accumulators
 - Overhead less than 10 ms and 4 KB for full CT log

N	N _∧	Sub-acc. type	$N_{\sf sub}$		Acc. verify ns]	_	extra 3]
2 ³¹ 2 ³¹ 2 ³¹	2 ¹⁵ 2 ¹⁵ 2 ¹⁵	RSA Bilinear Merkle	2 ¹⁶ 2 ¹⁶ 2 ¹⁶	0.13	3.97 2.81 < 0.01	1623	384 768 512
2 ³¹ 2 ³¹ 2 ³¹	2 ²¹ 2 ²¹ 2 ²¹	RSA Bilinear Merkle	2 ¹⁰ 2 ¹⁰ 2 ¹⁰	8.36	3.97 2.81 < 0.01	3255	384 768 320

Conclusion

- Changes to Merkle-Tree structure enable less costly PIR queries
- Sub-tree structure generalizes to other types of accumulators
- Multi-server PIR based on DPFs with sub-accumulators
 - Overhead less than 10 ms and 4 KB for full CT log
- Multi-server PIR possible without major changes in CT ecosystem
- Optional for users if they want privacy, compatible with old API

Questions?

Implementation:

- DPF (in C++): https://github.com/dkales/dpf-cpp
- DPF (in Go): https://github.com/dkales/dpf-go
- Log server: https://github.com/dkales/certificate-transparency

References I

[MBF⁺16]

[BGI15]	Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. EUROCRYPT (2), volume 9057 of Lecture Notes in Computer Science, pages 337–367. Springer, 2015.
[CGK ⁺ 95]	Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval. FOCS,

[Gl14] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. EUROCRYPT, volume 8441 of Lecture Notes in Computer Science, pages 640–658. Springer, 2014.

[Lau14] Ben Laurie. Certificate transparency. ACM Queue. 12(8):10–19, 2014.

pages 41-50. IEEE Computer Society, 1995.

[LG15] Wouter Lueks and Ian Goldberg. Sublinear scaling for multi-client private information retrieval. Financial

Cryptography, volume 8975 of *Lecture Notes in Computer Science*, pages 168–186. Springer, 2015.

[LLK13] Ben Laurie, Adam Langley, and Emilia Käsper. Certificate transparency. RFC, 6962:1–27, 2013.

Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian. XPIR: private information retrieval for everyone. *PoPETs*, 2016(2):155–174, 2016.